ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

Ph.D. (PHYSICS)

COURSE CODE: 122

Signature of the Invigilator (with date)	Register Number :	
Signature of the Invigilator (with date)		
		Signature of the Invigilator (with date)

COURSE CODE: 122

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

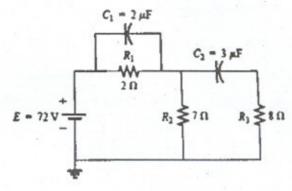
1.	With which type of spectroscopy would one observe the pure rotation spectrum of H2	?
	(A) Microwave (B) Raman (C) Ultraviolet (D) NMR	
2.	The vibrational frequency of a diatomic molecule of reduced mass μ and fore constant k is expressed as	e
	(A) $2\pi\sqrt{\mu k}$ (B) $\frac{1}{2\pi}\sqrt{\frac{\mu}{k}}$ (C) $\frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$ (D) $\sqrt{\frac{k}{\mu}}$	
0		
3.	The point group of benzene molecule is	
	(A) C_{2v} (B) D_{6h} (C) C_{3v} (D) D_{2h}	
4.	The difference between soft and hard X-rays lies in	
	(A) Velocity (B) Intensity (C) Polarization (D) Frequency	
5.	The total number of Zeeman components observed in an electronic transition $^2D_{5/2} \rightarrow ^2P_{3/2}$ of an atom in a weak field is	n
,	(A) 4 (B) 6 (C) 12 (D) 3	
6.	In a thermodynamic process, the gas has the equations of state given b	y
	$V=V_o\big[1+\alpha(T-T_o)\big], \left(\frac{\partial V}{\partial p}\right)_T=0 \ \ {\rm and} \ \ C_p \ \ {\rm is \ a \ constant. \ The \ change \ in \ entropy \ of \ the change \ of \ entropy \ of \ o$	ie
	gas in the system is	
	(A) $\Delta S_o = C_p \log T - \alpha V_o p$ (B) Zero	
	(C) $\Delta S = C_p - \alpha V_o p$ (D) $\Delta S = C_p - \alpha V_o p \log T$.	
7.	What is the change in rotational constant B when hydrogen is replaced by deuterium in the hydrogen molecule?	m
	(A) 2B (B) 6B (C) B/4 (D) B/2	
8.	Raman shift is	
	(A) Independent of frequency of incident radiation, but depends on Scatterer	
	(B) Independent of Scatterer, but depends on the frequency of incident radiation	
	(C) Independent of both the frequency of incident radiation and scatterer	
	(D) Dependent on both the frequency and intensity of incident radiation.	
122	2	

9.	What is the nuclear g_N factor for 12 F nucleus which has a magnetic moment of 2.6273 μ_N and whose nuclear spin quantum number, $I = 1/2$?
	(A) 5.2546 (B) 1.3136 (C) 10.5092 (D) 0.6568
10.	Which one of the following molecules will show a microwave rotational spectrum?
	$ (A) CO_2 \qquad \qquad (B) SF_6 \qquad \qquad (C) OCS \qquad \qquad (D) CH_4 $
11.	If the Lagrangian for a particle in gravitational field is expressed in cylindrical
	coordinates (r,ϕ,z) as $L=\frac{1}{2}m\dot{z}^2+\frac{1}{2}mr^2\dot{\phi}^2-mgz$, where r is constrained to have a
	constant value, then
	(A) ϕ is a cyclic coordinate (B) ϕ and z are cyclic coordinates
	(C) z is a cyclic coordinate (D) ϕ and z are not cyclic coordinates
12.	The motion of a free particle is described by the Lagrangian equation $\ddot{x}=0$. Under
	the change in the Lagrangian $L \to L + \frac{dF}{dt}$, where $F = x^2t$, the equation of motion
	becomes
	(A) $\ddot{x} = 2xt$ (B) $\ddot{x} = 2\dot{x}t$ (C) $\ddot{x} = 0$ (D) $\ddot{x} = t^2$
13.	Treating the moment of inertia tensor I as a 3×3 matrix if the value of its trace is 13 and the values of two of the principal moments of inertia are 4 and 5 , then the value of the third principal moment of inertia is
	(A) 1 (B) 2 (C) 3 (D) 4
14.	In a three dimensional Euclidean space, the number of Eulerian angles required to describe the rotational motion is
	(A) 4 (B) 3 (C) 9 (D) 6
15.	If the Poisson bracket $\{x, p\} = 1$, the value of $\{x^2, p\}$ is
	(A) $2x$ (B) $-2x$ (C) 2 (D) -2
16.	In the following transformations from one set of canonical quantities (q, p) to another set of canonical quantities (Q, P) , which one is a canonical transformation?

 $(\mathrm{A}) \quad q=P, p=Q \qquad \quad (\mathrm{B}) \quad q=-P \; ; \; p=Q \quad (\mathrm{C}) \quad q=-P \; ; \; p=-Q \quad \quad (\mathrm{D}) \quad q=-Q ; \; p=P$

	(A)	Lagrangian being zero			
	(B)	Potential energy being zero			
	(C)	Total energy being zero			
	(D)	Gradient of the potential energy bei	ing zero	0	
18.		relativistic mass of a particle of re × 108 m/s is equal to	st mas	ss 8 g that is m	oving with a velocity
	(A)	8 g (B) 10 g	(C)	2 g	(D) 6.4 g
19.	The	kinetic energy of a particle of rest m	ass mo	moving with a	relativistic velocity v
	is				
	(A)	$\frac{1}{2}m_0v^2 (B) mc^2$	(C)	$mc^2 - m_0c^2$	(D) $m_0 c^2$
20.	In that	he Hamilton-Jacobi theory, the new	set of c	eanonical quanti	ties Q and P are such
	(A)	Only Q is constant	(B)	Both Q and P a	are constants
	(C)	Only P is constant	(D)	Q and P are no	t constants
21.	Let	$\psi(x,t)$ is the position-space wave fu	nction	corresponding t	o the state $ \psi(t)\rangle$ of a
	qua	ntum mechanical particle. If $\langle \psi(t) $	$ \psi(t)\rangle$ i	s found to be i	ndependent of t , this
	imp	lies that $ \psi(x,t)^2 $ is			
	(A)	Independent of x	(B)	Independent of	f t
	(C)	A constant	(D)	Zero	
22.	The	uantum mechanical particle moves f wall of the cavity is a perfectly rigio particle are			
	(A)	Degenerate	(B)	Non-degenerat	e
	(C)	Continuous	(D)	Continuous an	d non-degenerate
23.		he probability that x lies between $x < \infty$, $\alpha > 0$, then the probability that			
	(A)	$e^{-ax_1} - e^{-ax_2}$ (B) $a(e^{-ax_1} - e^{-ax_2})$) (C)	$e^{-a(x_1-x_2)}$	(D) $e^{-a(x_2-x_1)}$
122		4			

17. For a conservative system, the equilibrium configuration corresponds to the

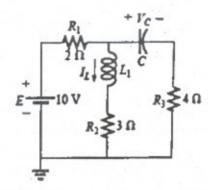

	(A)	4	(B)	6	(C)	8	(D)	10
25.	Whi	ch one of the foll	owing	relations is t	rue for t	he Pauli matri	ces σ_x , σ_x	σ_y and σ_z ?
	(A)	$\sigma_x \sigma_y = \sigma_y \sigma_x$	(B)	$\sigma_x \sigma_y = \sigma_z$	(C)	$\sigma_x \sigma_y = -\sigma_z$	(D)	$\sigma_x\sigma_y=-\sigma_y\sigma_x$
26.	The	orbital angular	momer	ntum l takes				
	(A)	Only half integ	er valı	ies	(B)	Both integer a	and half	integer values
	(C)	Only integer va	alues		(D)	Continuous va	alues	
27.	In tl	he Heisenberg pi	cture o	of quantum n	nechanic	s, which is time	e depend	ent?
	(A)	State of the sys	stem		(B)	Operator		
	(C)	Both state and	operat	tor	(D)	Density matr	ix	
28.		he normal Zeen form magnetic fie The spherical s	eld cau	ses the Zeem				
	(B)	It increases the	energ	gy of the syst	em			
	(C)	The spherical s	ymme	try is broken				
	(D)	It decreases th	e energ	gy of the syst	em			
29.	For	a particle of ma	ass m	in a one-din	nensiona	l harmonic osc	illator p	otential of the
	forn	$ V(x) = \frac{1}{2}mw^2x^2$, the f	irst excited e	nergy eig	gen state is ψ (:	$x(x) = xe^{-ax^{2}}$. The value of
	a is							
	(A)	$\frac{1}{4}mw\hbar$	(B)	$\frac{1}{2}mw\hbar$	(C)	$\frac{1}{2m}\hbar w$	(D)	$\frac{1}{2\hbar}mw$
30.	If ê	is the density	matrix	of a nure st	tate and	if the state is	not norn	nalized to one
50.		n it implies	matrix	or a pure si	ate and	ii the state is	not norn	nanzea to one,
		$\hat{p}^2 = \hat{p}$			(B)	$\hat{p}^2 < \hat{p}$ or \hat{p}^2	> ĥ	
						$p < p$ or p $Tr(\hat{p}) = 0$	P	
	(C)	$Tr(\hat{p}) = 1$			(D)	Ir(p) = 0		

24. The degeneracy of the n=2 level for a three dimensional isotropic harmonic oscillator

31.	The cross-section for emission of bremumber Z as	msstrah	llung depends on the target atomic
	(A) Z (B) $Z-1$	(C)	$Z - 2$ (D) Z^2
32.	The collective model predicts about the r	otation	al levels of
	(A) Even – Even nuclei	(B)	Odd – Odd nuclei
	(C) ·Even – Odd nuclei	(D)	Odd – Even-Odd nuclei
33.	The spin-parity assignment of $\operatorname{Ca^{41}}(Z =$	20) acco	ording to shell model is
	(A) $7^+/2$ (B) $7^-/2$	(C)	5 ⁺ /2 (D) 5 ⁻ /2
34.	The total scattering cross section of S-wa	ave neu	trons when the phase shift is δ_o is
	(A) Directly proportional to $\sin \delta_o$	(B)	Directly proportional to $\sin^2\delta_o$
	(C) Inversely proportional to $\sin \delta_o$	(D)	Inversely proportional to $\sin^2 \delta_o$
35.	The exchange of spin coordinates gives r	ise to tl	ne following potential
	(A) Majorana (B) Meson	(C)	Bartlett (D) Heisenberg
36.	The gamma decay $2^+ \rightarrow 0^+$ is a		
	(A) Pure E ₂ transition	(B)	Pure M2 transition
	(C) Mixture of E2 and M2 transitions	(D)	Mixture of E_1 and M_3 transitions
37.	The Compton cross section for absorption atomic number Z as	on of ga	amma rays by matter depends on the
	(A) Z^5 (B) Z^3 .	(C)	1/Z (D) Z
38.	Zone plate is an physical object used to i	llustrat	e
	(A) Fraunhofer diffraction	(B)	Fresnel diffraction
	(C) Interference	(D)	Polarization
39.	The maximum energy of deuteron comic The maximum energy of proton that can		
	(A) 40 M-V (B) 20 M-V	(0)	20 MaV (D) 10 MaV

- 40. A particle of mass m and charge q enters a homogeneous and stationary electric field \vec{E} with a velocity v_o perpendicular to the direction of the field. The particles path will be a
 - (A) Circle
- (B) Ellipse
- (C) Parabola
- (D) Straight line

41. The energy stored by each capacitor of Figure are



(A) 256μJ, 4704μJ

(B) $256\mu J$, $470 \mu J$

(C) 256μJ, 704 μJ

- (D) 250 μJ, 470 μJ
- 42. The current I_L and the voltage V_C of Figure are

- (A) 6A, 2V
- (B) 0.5A, 6V
- (C) 2A, 6V
- (D) 0.5A, 3V
- 43. Given the current $i = 6 \times 10^{-3} \sin(1000t)$, then t = 2 ms, the current is
 - (A) 0.20939 mA

- (B) 5.46 mA
- (C) 2.052 mA in the negative direction
- (D) 5.58 mA
- 44. If the source current leads the applied voltage, the network is predominantly
 - (A) Resistive

(B) Inductive

(C) Capacitive

(D) None of the above

45.		ne applied frequency increases, the reactance of a inductor ————————————————————————————————————
	(A)	Increases linearly, decreases linearly
	(B)	Increases exponentially, decreases exponentially
	(C)	Constant, decreases exponentially
	(D)	Increases linearly, decreases nonlinearly
46.	Acco	ording to Maxwell, the radiation pressure is
	(A)	Equal to the energy density of the electromagnetic Wave
	(B)	Equal to the energy density divided by velocity of light
	(C)	Zero
	(D)	Proportional to area of illuminating surface
47.		tomic clock, the atom interferometer or in the focusing of atomic beams, which of following is the basis for its operation?
	(A)	High purity quartz crystal (B) Optical laser cooling
	(C)	Monochromatic laser light (D) Magnetic lens
48.		absolute refractive index of a medium is proportional to square root of its ectric constant. This statement is known as
	(A)	Snell's equation (B) Fresnel's relation
	(C)	Dispersion relation (D) Maxwell's relation
49.	Mici	rowaves are electromagnetic waves having
	(A)	Wavelength ranging in a few µm
	(B)	Energy in the range of few μW
	(C)	Frequency ranging from 109 Hz to 1011 Hz
	(D)	Frequency ranging from $10^6~\mathrm{Hz}$ to $10^{13}~\mathrm{Hz}$
50.	Let	F = (A + BC)(B + CA'). According to Boolean algebra F is equal to
	(A)	A (B) B (C) C (D) A'
51.	Ortl	horhombic crystal structure is defined by
	(A)	$a=b=c,\ \alpha=\beta=\gamma=90^{\circ}$ (B) $\alpha\neq b=c,\ \alpha=\beta=\gamma=90^{\circ}$
	(C)	$a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$ (D) $\alpha \neq b \neq c, \ \alpha = \beta = \gamma \neq 90^{\circ}$

52.		ording to Fermat's principle, light, while traveling from one point A to another t B across several medium with different refractive indices, traverses the route
	havi	ng the
	(A)	The smallest optical path length from A to B
	(B)	Curved but still minimum distance between A and B
	(C)	Lowest refractive index of the medium
	(D)	Straight line path from A and B

(C) 001

(D)

(D)

111

54	The number of atoms	s per unit cell of th	e reciprocal of b	occ structure is	

- (B) 2 (A) 1 · (C) 3 (D) 4
- Hydrogen bond is found in 55. (A) H₂ molecule (B) HCl molecule H₂O molecule HF molecule

The Miller Indices of the planes parallel to a-c plane is

(B) 010

53.

(A) 100

(C)

- 56. Which degeneracy is not permitted for the rotational symmetry in a crystal
- (B) (A) 2 fold 3 fold (C) 4 fold (D) 5 fold
- The potential energy between two atoms in a molecule is given by $U(x) = \frac{a}{r^{12}} \frac{b}{r^6}$ where a and b are positive constants and x is the distance between two atoms in a molecule. The molecule will be in stable equilibrium if
 - (B) $x = \left(\frac{a}{2b}\right)^{1/6}$ (C) $x = \left(\frac{11a}{5b}\right)^{1/12}$ (D) $x = \left(\frac{2a}{b}\right)^{1/6}$ (A)
- The lattice constant of Fe with bcc structure, density 7860 kg/m3 and atomic weight 58. 55.85 is
 - (A) 0.143 nm (B) 0.286 nm (C) 1.43 nm (D) 2.86 nm

59.	For the matrix	A =	1 0	0	$, \exp(A)$ is	
			-	-		

- (A) $\begin{bmatrix} e & e \\ e & e \end{bmatrix}$ (B) $\begin{bmatrix} e & 0 \\ 0 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & e \\ e^2 & 0 \end{bmatrix}$
- (D) $\begin{bmatrix} e & 0 \\ 0 & e^2 \end{bmatrix}$

The process of contraction of a tensor reduces its rank by

- (B) 1
- (C)

(D) 3

The value of the integral $\int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$ using residue theorem is

- (A) $\frac{2\pi}{3}$
- (B) $\frac{3\pi}{2}$ (C) 2π
- (D) Zero

Let F denote the Fourier transform and let $\mathbf{F}[f(t)=g(w)]$. Then, $\mathbf{F}[f(t)\cos(wt)]$ is equal to

(A) $\frac{1}{2}g(w-a)-\frac{1}{2}(w+a)$

(B) $\frac{1}{2}g(w-a)+\frac{1}{2}g(w+a)$

(C) $\frac{1}{2}g(w-a)$

(D) g(w+a)

Let J_{o} denote the Bessel function. Then, the Laplace transform of J_{o} is

- (A) $\frac{1}{\sqrt{s^2+1}}$ (B) $\sqrt{s^2+1}$ (C) $\sqrt{s^2-1}$
- (D) $\frac{1}{\sqrt{a^2-1}}$

Dirac delta function is used when a function exists with 64.

- Zero values in a very short interval
- Non-zero values in a very short interval
- Non-zero values in a long interval (C)
- Infinite values in a long interval (D)

The value of the integral $\oint (z^2 - 2z - 3) dz$, where the contour is the circle with |z| = 2is

- (A) $2\pi i$
- (B) $\frac{1}{2\pi i}$
- (C)

(D) Zero

66.	The components of an ordinary vector in an N-dimensional space are the components
	of
	(A) Vector (B) Mixed tensor
	(C) Covariant tensor of rank I (D) Contravariant tensor of rank 1
67.	The eigenvalues of the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ are
	(A) $e^{-i\theta}, e^{-i\theta}$ (B) $e^{i\theta}, e^{i\theta}$ (C) $e^{+i\theta}, e^{-i\theta}$ (D) 0, 1
68.	Which of these equation is not a Maxwell's equation for a static electromagnetic field
	in a linear homogeneous media?
	(A) $\vec{\nabla} \cdot \vec{B} = 0$ (B) $\vec{\nabla} \cdot \vec{D} = 0$ (C) $\oint \vec{B} \cdot \vec{dl} = \mu_0 I$ (D) $\nabla^2 \vec{A} = \mu_0 \vec{J}$
69.	For a linear medium Poisson equation becomes Laplace's equation when
	(A) Charge density is constant
	(B) Charge density is zero
	(C) Charge density is uniform
	(D) Charge density is spherically symmetric
70.	Two identical coils carry the same current I but in the opposite direction, the
	magnitude of the magnetic field B at point on the axis midway between the coils is
	(A) Zero
	(B) Twice that is produced by one coil
	(C) Same as that produced by one coil
	(D) Half as that produced by one coil
71	The SI unit of magnetic charge is
71.	
	(A) A.m ² (B) Coulomb (C) A.m (D) Ampere

72.	Let	a fluid has compressibility k and a de	ensity	ho and Hook's l	aw hol	ds good for the
	fluid	d. Suppose a one-dimensional wave tra	avels i	n the fluid, then	the wa	ive will be
	(A)	A non-dispersive wave	(B)	A dispersive w	ave	
	(C)	A nonlinear wave	(D)	A solitary wave	е	
73.	Whi	ch of the following appliances do not o	perat	e in microwave r	egion?	
	(A)	Microwave oven	(B)	Satellite Telev	ision	
	(C)	Police radar	(D)	AM Radio		
74.		ght pulse propagates through a fiber er of pulse is reduced by 40% after a d			on of 0.	25 dB/Km, the
	(A)	8.874 km (B) 88.74 km	(C)	80000 km	(D)	$0.25~\mathrm{km}$
75.	The	skin depth in copper for EM wave of i	reque	ncy 10Hz and 10	⁸ Hz is	respectively
	(A)	Same for both frequencies				
	(B)	Skin depth at 10 Hz is higher				
	(C)	Skin depth at $10^8 \mathrm{Hz}$ is higher				
	(D)	Zero for copper				
76.	Whi	ch of the following is <u>not</u> a source of s	tatic n	nagnetic field?		
	(A)	A dc current in wire				
	(B)	A permanent magnet				
	(C)	A charged disc rotating with constar	nt spee	ed		
	(D)	An accelerating charge				
77.	In c	ylindrical coordinates the equation $\frac{\partial^2}{\partial \mu}$	$\frac{\psi}{\rho^2} + \frac{1}{\rho}$	$\frac{\partial \psi}{\partial \rho} + \frac{\partial^2 \psi}{\partial z^2} + 10 =$	0 is cal	lled
	(A)	Helmholtz Equation	(B)	Laplace's equa	tion	
	(C)	Poisson's Equation	(D)	Lorentz Equat	ion	

78.	A particle of mass m moving in one dimension is assumed to have any velocity in the									y in the		
	range $\left[-v_0,+v_0\right]$ with equal probability. So we have the probability density $P(v)=\frac{1}{2v_0}$.											
	The	probabili	ty densi	ty for	kinetic er	nergy	E goes	s as				
	(A)	E					(B)	\sqrt{E}				
	(C)	Indepen	dent of	E			(D)	$\frac{1}{\sqrt{E}}$				
79.	Eacl		lic coord	inate	appears o			vhich there a Hamiltonia				
	(A)	$\frac{f}{2}kT$		(B)	fkT		. (C)	$\frac{f}{3}kT$	(D)	$\frac{2f}{3}kT$		
80.	Let	C_p and	C_v be	spec	ific heat	capa	cities	at constan	t pressui	re and	volume	
	respectively. Then, for ideal gas consisting of relativistic particles , $\frac{C_p}{C_v}$ is											
	(A)	5/3		(B)			(C)			4/3		
81.	Pressure exerted by photon gas is related to energy density u as											
	(A)	u/3		(B)	2u/3		(C)	3u/5	(D)	5u/3		
82.	Mean square fluctuations in energy of a canonical ensemble is related to											
	(A)	Entropy					(B)	Gibb's free	energy			
	(C)	Specific	heat				(D)	Chemical p	otential			
83.	Density of states at E for free electrons in metals is proportional to E^α . The values of α in 1, 2 and 3 dimensions respectively are											
	(A)	-1/2, 0,	1/2	(B)	1/2, 0, 1/	2	(C)	-1/2, 1/2, 0	(D)	1/2, 1/	2, 0	
84.	In the reaction called nitrogen fixation given by $N_2 + 3H_2 \leftrightarrow 2NH_3$ if the total pressure is increased, what happens to NH_3 ?											
	(A) Production of NH ₃ decreases											
	(B) Production of NH ₃ increases											
	(C) Production of NH ₃ remains unchanged											
	(D)	NH3 dec	ompose	S								
						13					122	

86.	Consider a system at temperature T and number density n . Quantum statistics is necessary if $T < n^a$, where α is										
	(A) 1/3 (B) 3/2 (C) 1/2 (D) 2/3										
87.	Specific heat of two dimensional crystalline solids at low temperature is proportional to										
	(A) T^3 (B) T^1 (C) T^2 (D) T^0										
88.	Consider the ordinary differential equation (ODE) $y'' + x^2y = 0$ with initial conditions										
	y(0) = A and $y'(0) = B$. If we apply Laplace transform to this differential equation, we get										
	(A) A second order ODE with constant coefficients										
	(B) A second order ODE with variable coefficients										
	(C) A first order ODE with constant coefficients										
	(D) A linear or non-linear algebraic equations										
89.	If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $ A^3 = 125$ then the value of α is										
	(A) ± 1 (B) ± 2 (C) ± 3 (D) ± 5										
90.	If $f(x)$ is differentiable and is a strictly increasing function, then $\lim_{x\to 0} \frac{f(x)^2 - f(x)}{f(x) - f(0)}$ is equal to										
	(A) 1 (B) 0 (C) 2 (D) -1										
91.	Let L^{-1} denote the inverse Laplace transform. Then, $L^{-1}\left[\frac{2as}{\left(s^2+a^2\right)^2}\right]$ is										
	(A) $t\sin(at)$ (B) $at\sin(at)$ (C) $t-\sin(at)$ (D) $-t\sin(at)$										
122	14										

Two fermions occupy three states of energies 0, ε and 2ε . The ground and first

(C) ε ad 3ε

(D) 0 and 2ε

is

excited state energies respectively are

(A) 0 and ε (B) ε and 2ε

- 92. For the differential equation $2x^2y' + x(2x+1)y' y = 0$, the point x = 0 is
 - (A) A regular singular point
- (B) Not a singular point
- (C) A singular point but not regular
- (D) An isolated singular point
- 93. Suppose that one solution y_1 of the differential equation y'' + p(x)y' + q(x)y = 0 is known to us. Then, the second linearly independent solution can be found by using
 - (A) $y_2 = \int \frac{1}{y_1^2} \exp\left(-\int p(x)dx\right) dx$
- (B) $y_2 = \int \frac{1}{y_1^2} \exp(\int p(x) dx) dx$
- (C) $y_2 = \int \frac{1}{y_1} \exp(-\int p(x)dx) dx$
- (D) $y_2 = \exp(-\int p(x)dx)$
- 94. The integrating factor for the differential equation $(3y^2 + 2xy)dx (2xy + x^2)dy = 0$ is
 - (A) $\exp\left(\frac{-1}{x+y}\right)$

(B) Integrating factor is not obtainable

(C) $\frac{1}{xy(x+y)}$

- (D) e^{-xy}
- 95. Let $y = cx + \frac{1}{c}$, $c \neq 0$. If we obtain a suitable ordinary differential equation (ODE) by eliminating the constant c, then we get,
 - (A) First order second degree nonlinear ODE
 - (B) First order second degree linear ODE
 - (C) First order first degree linear ODE
 - (D) Second order first degree linear ODE
- 96. We are interested to change the variable from x to t using $x = e^t$. If we apply this transformation to the equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 4y = 0$, we get
 - $(A) \quad \frac{d^2y}{dt^2} 4y = 0$

(B) $\frac{d^2y}{dt^2} + e^{-t}\frac{dy}{dt} - 4y = 0$

(C) $\frac{d^2y}{dt^2} + e^{-2t}\frac{dy}{dt} + 4y = 0$

(D) $\frac{d^2y}{dt^2} + e^t \frac{dy}{dt} + 4y = 0$

- 97. The Bessel function of order v and first kind is $J_{\pm v}(x)$ and that of second kind is $Y_v(x)$. We know that Bessel functions are solutions of the Bessel differential equation $x^2y'' + xy' + (x^2 v^2)y = 0$. Then, the general solution of the equation $x^2y'' + xy'\left(x^2 \frac{1}{16}\right)y = 0$ is given by
 - (A) $y(x) = AJ_{1/4}(x) + BY_{-1/4}(x)$
 - (B) $y(x) = AJ_{1/4}(x) + BJ_{-1/4}(x) + CY_{1/4}(x)$
 - (C) $y(x) = AJ_{1/4}(x) + BY_{1/4}(x)$
 - (D) $y(x) = AJ_{1/4}(x) + BJ_{-1/4}(x)$
- 98. Let F denote Fourier transform and let F[f(t)] = F(w). Select the <u>wrong</u> statement from the options.
 - (A) $\mathbf{F}[\mathbf{F}[f(t)]] = 2\pi f(w)$ is the symmetry property of Fourier transform
 - (B) $\mathbf{F}[\exp(iw_0t)f(t)] = \mathbf{F}(w+w_0)$ is the w-shifting property
 - (C) $\mathbf{F} \left[\int_{-\infty}^{t} f(\tau) dT \right] = \frac{1}{iw} \mathbf{F}(w)$ is the integration property of Fourier transform
 - (D) $\mathbf{F}[f^{(n)}(t)] = (iw)^n \mathbf{F}(w)$ is the derivative property of Fourier transform
- 99. If we apply Fourier transform with respect to x to the partial differential equation $\frac{\partial u(x,t)}{\partial t} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}, \text{ we get,}$
 - (A) A second order linear ODE in w and t
 - (B) A first order linear ODE in w and t
 - (C) A first order nonlinear ODE in w and t
 - (D) An algebraic equation in w and t
- 100. How many boundary conditions are required to solve the <u>second order</u> partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$?
 - (A) 2 only

- (B) Minimum 2 and maximum 4
- (C) Minimum 4 and maximum any
- (D) 4 only